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 Pedestal basics 

 Impurity measurements in the C-Mod pedestal 

 Poloidal ion flow in the presence of strong radial 
electric field 

 Enhancement of the bootstrap current in the 
banana regime pedestal   

AGENDA 



PEDESTAL  BASICS. MAIN ION TEMPERATURE 
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   ρpol ≡ viMc ZeBpol

Entropy production analysis:  

• The leading order ion distribution function is
 Maxwellian 
• The ion temperature does not change over the
 pedestal to leading order 

Physical interpretation: 

•  As an ion runs over a flux surface, it experiences
 radial excursions ~ ρpol , thereby equilibrating
 the pedestal 
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PEDESTAL  BASICS. MAIN ION PRESSURE BALANCE 

The key feature of a subsonic pedestal directly affecting  particle orbits is 
the strong radial electric field needed to sustain ion pressure balance. 
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Diamagnetic and ExB drifts cancel
 each other to leading order 



IMPURITY FLOW MEASUREMENTS AT ALCATOR C-MOD: 

Observation: In the banana regime pedestal, the boron impurity poloidal
 flow is larger than that predicted by conventional formulas. 
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Relation between the background and impurity poloidal ion flows:  

If Vi
pol  goes smaller or even negative it no longer competes with the

 diamagnetic terms, thereby resulting in a relatively large Vz
pol. Such a change

 in Vi
pol  should alter the bootstrap current as well. 

These impurities are highly collisional and their mean free path is too short for
 their kinetic energy to be affected by the electric field. 

It may only be the friction with background ions that the electric field manifests
 itself through  



MAIN ION ORBITS IN PEDESTAL  

ExB drift is of order vth(ρ/ρpol)<<v||, but due to the geometrical
 factors its contribution to the poloidal velocity is comparable to

 that of v|| 
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EQUATIONS OF MOTION 
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then, using µ and ψ* invariance we can write energy conservation as    
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    S ≡ 1 + cI 2 ′′φ BΩ
orbit squeezing 

Trapped-passing boundary: 
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Assume a quadratic potential well and expand about ψ*  

the subscript “0” corresponds to the outboard equatorial plane (θ=0)  



TRAPPED PARTICLE REGION 

In the absence of orbit squeezing (S=1),  
ExB drift has the following effects: 

1) Increases the depth of the effective
 potential well – now particles with no
 magnetic moment can be trapped. 
2) Shifts the axis of symmetry of the
 trapped particles region. 

For small enough ε the trapped particle 
fraction decays exponentially as |u|

 grows. Accordingly, neoclassical ion
 heat flux and polarization disappear in

 the large electric field limit.
 Consequence: ZF residual tends to 1. 

Notice, that u≈(ρpol/ρ)vE»vE  and therefore particle dynamics can
 be  qualitatively changed even by the ExB drift much less than vi. 
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NEED FOR A NEW MODEL COLLISION OPERATOR IN 
THE PEDESTAL 

In the pedestal, the pitch angle scattering component
 of the collision operator is not sufficient to retain
 transitions across the trapped-passing boundary! 



NEW VARIABLES FOR THE COLLISION OPERATOR  

1)  In the absence of the electric field (u=0), reduce to the 
conventional variables, v2/2 and 2µB0/v2  

2)  Almost orthogonal near the trapped-passing boundary 
so that only          contribute to neoclassical processes 

    
E ≡

v|| + u( )2

2S
+

B
B0

µB0 + u2( )
    
λ ≡

µB0 + u2( )
E

  ∂ ∂λ



THE PEDESTAL MODEL FOR THE LIKE 
PARTICLE COLLISION OPERATOR 

Start from the Rosenbluth form : 
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Switching to new variables: 
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MOMENTUM CONSERVATION 

The new model collision operator previously defined does not  
manifestly conserve momentum. To address this issue

 introduce a free parameter σ to redefine  
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Then, after solving for the first order correction to the distribution 
 function we can find σ such that our operator conserves

 momentum. 

Notice, it is the momentum exchange between the  
trapped/barely-passing and freely-passing fractions that plays

 the key role in establishing the ion flow 



PASSING CONSTRAINT IN THE PEDESTAL 

Then, using number, energy and momentum
 conservations we rewrite the above constraint 
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with the integration to be completed holding energy, magnetic  
moment and canonical angular momentum (ψ*) fixed. Also 

to account for the effect of the ExB drift. 
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perturbation of the Maxwellian fM 



SOLUTION FOR THE PASSING CONSTRAINT 
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And we are in a position to calculate the neoclassical quantities  
of interest by taking moments of this solution. 



NEOCLASSICAL ION HEAT FLUX 
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NEOCLASSICAL ION PARALLEL FLOW 

Similarly to the ion heat flux we calculate the parallel ion flow to
 obtain 

    
Vi|| = −

cI
B
∂φ
∂ψ

+
1

Zeni

∂p
∂ψ

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
−1.17

I
Ω0M

∂T
∂ψ

J u( )

Poloidal flow
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 at u/vi ≈ 1.2!  

poloidal flow 



IMPURITY MEASUREMENTS AT C-MOD YET AGAIN 

Courtesy of K.D. Marr 

good match 

bad match  

Typical discrepancy: peaks in measured and predicted Vz are misaligned, but
 the former is aligned with the peak in Er. Since direct measurements of Tz are
 not available Ti=TZ is set. Recall   u vi ∝ Er Ti

Ti = TZ? 



IMPURITY MEASUREMENTS AT C-MOD YET AGAIN 

• For the PS regime, conventional approach does fairly well 

• For the plateau regime, it is not clear which approach is better 

• For the banana regime, the agreement is noticeably improved if Er
 effects are accounted for 



ENHANCEMENT OF THE BOOTSTRAP CURRENT IN THE 
BANANA REGIME PEDESTAL  

The calculation of the bootstrap current runs the same as in the
 conventional case with the new expression for the parallel ion flow in
 place of the old one 
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Analogously to the impurity case, poloidal ion flow going negative
 results in a bootstrap current larger than that predicted by the

 conventional theory 
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PHYSICAL PICTURE 

ion flow 

electron flow 

Conventional case: 

Electric field acts to increase the difference between the electron and ion flow.
 The friction grows in response, but the bootstrap current is still enhanced. 



SUMMARY 

  In the banana regime pedestal ion orbits are modified by a 
strong radial electric field, thereby calling for reexamination 
of conventional neoclassical theory 

  In particular, neoclassical poloidal ion flow changes 
direction as compared to its core counterpart 

  This result is confirmed by impurity measurements at the Alcator 
C-Mod 

  Consequently, the bootstrap current in the pedestal is larger that 
one might expect based on conventional consideration 


